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Abstract
Self-attention mechanism in graph neural networks
(GNNs) led to state-of-the-art performance on
many graph representation learning tasks. Cur-
rently, at every layer, attention is computed be-
tween connected pairs of nodes and depends solely
on the representation of the two nodes. How-
ever, such attention mechanism does not account
for nodes that are not directly connected but pro-
vide important network context. Here we pro-
pose Multi-hop Attention Graph Neural Network
(MAGNA), a principled way to incorporate multi-
hop context information into every layer of atten-
tion computation. MAGNA diffuses the attention
scores across the network, which increases the “re-
ceptive field” for every layer of the GNN. Un-
like previous approaches, MAGNA uses a diffu-
sion prior on attention values, to efficiently ac-
count for all paths between the pair of disconnected
nodes. We demonstrate in theory and experiments
that MAGNA captures large-scale structural infor-
mation in every layer, and has a low-pass effect that
eliminates noisy high-frequency information from
graph data. Experimental results on node classifi-
cation as well as the knowledge graph completion
benchmarks show that MAGNA achieves state-of-
the-art results: MAGNA achieves up to 5.7% rela-
tive error reduction over the previous state-of-the-
art on Cora, Citeseer, and Pubmed. MAGNA also
obtains the best performance on a large-scale Open
Graph Benchmark dataset. On knowledge graph
completion MAGNA advances state-of-the-art on
WN18RR and FB15k-237 across four different per-
formance metrics.

1 Introduction
Self-attention [Bahdanau et al., 2015; Vaswani et al., 2017]
has pushed the state-of-the-art in many domains including
graph presentation learning [Devlin et al., 2019]. Graph At-
tention Network (GAT) [Veličković et al., 2018] and related
models [Li et al., 2018; Wang et al., 2019a; Liu et al., 2019;
∗Contact Author: xjtuwgt@gmail.com
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Figure 1: Multi-hop attention diffusion. Consider making a pre-
diction at nodes A and D. Left: A single GAT layer computes
attention scores α between directly connected pairs of nodes (i.e.,
edges) and thus αD,C = 0. Furthermore, the attention αA,B be-
tween A and B only depends on node representations of A and B.
Right: A single MAGNA layer: (1) captures the information of D’s
two-hop neighbor node C via multi-hop attention α′D,C ; and (2)
enhances graph structure learning by considering all paths between
nodes via diffused attention, which is based on powers of graph adja-
cency matrix. MAGNA makes use of nodeD’s features for attention
computation between A and B. This means that two-hop attention
in MAGNA is context (node D) dependent.

Oono and Suzuki, 2020] developed attention mechanism for
Graph Neural Networks (GNNs), which compute attention
scores between nodes connected by an edge, allowing the
model to attend to messages of node’s neighbors.

However, such attention computation on pairs of nodes
connected by edges implies that a node can only attend to
its immediate neighbors to compute its (next layer) repre-
sentation. This implies that receptive field of a single GNN
layer is restricted to one-hop network neighborhoods. Al-
though stacking multiple GAT layers could in principle en-
large the receptive field and learn non-neighboring interac-
tions, such deep GAT architectures suffer from the over-
smoothing problem [Wang et al., 2019a; Liu et al., 2019;
Oono and Suzuki, 2020] and do not perform well. Further-
more, edge attention in a single GAT layer is based solely
on representations of the two nodes at the edge endpoints,
and does not depend on their graph neighborhood context. In
other words, the one-hop attention mechanism in GATs limits
their ability to explore the relationship between the broader
graph structure. While previous works [Xu et al., 2018;
Klicpera et al., 2019b] have shown advantages in perform-
ing multi-hop message-passing in a single layer, these ap-
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proaches are not graph-attention based. Therefore, incorpo-
rating multi-hop neighboring context into the attention com-
putation in graph neural networks remains to be explored.

Here we present Multi-hop Attention Graph Neural Net-
work (MAGNA), an effective multi-hop self-attention mecha-
nism for graph structured data. MAGNA uses a novel graph
attention diffusion layer (Figure 1), where we first compute
attention weights on edges (represented by solid arrows), and
then compute self-attention weights (dotted arrows) between
disconnected pairs of nodes through an attention diffusion
process using the attention weights on the edges.

Our model has two main advantages: (1) MAGNA captures
long-range interactions between nodes that are not directly
connected but may be multiple hops away. Thus the model
enables effective long-range message passing, from impor-
tant nodes multiple hops away. (2) The attention computa-
tion in MAGNA is context-dependent. The attention value
in GATs [Veličković et al., 2018] only depends on node rep-
resentations of the previous layer, and is zero between non-
connected pairs of nodes. In contrast, for any pair of nodes
within a chosen multi-hop neighborhood, MAGNA computes
attention by aggregating the attention scores over all the pos-
sible paths (length ≥ 1) connecting the two nodes.

Mathematically we show that MAGNA places a Person-
alized Page Rank (PPR) prior on the attention values. We
further apply spectral graph analysis to show that MAGNA
emphasizes on large-scale graph structure and lowering high-
frequency noise in graphs. Specifically, MAGNA enlarges
the lower Laplacian eigen-values, which correspond to the
large-scale structure in the graph, and suppresses the higher
Laplacian eigen-values which correspond to more noisy and
fine-grained information in the graph.

We experiment on standard datasets for semi-supervised
node classification as well as knowledge graph completion.
Experiments show that MAGNA achieves state-of-the-art re-
sults: MAGNA achieves up to 5.7% relative error reduction
over previous state-of-the-art on Cora, Citeseer, and Pubmed.
MAGNA also obtains better performance on a large-scale
Open Graph Benchmark dataset. On knowledge graph com-
pletion, MAGNA advances state-of-the-art on WN18RR and
FB15k-237 across four metrics, with the largest gain of 7.1%
in the metric of Hit at 1.

Furthermore, we show that MAGNA with just 3 layers and
6 hop wide attention per layer significantly out-performs GAT
with 18 layers, even though both architectures have the same
receptive field. Moreover, our ablation study reveals the syn-
ergistic effect of the essential components of MAGNA, in-
cluding layer normalization and multi-hop diffused attention.
We further observe that compared to GAT, the attention val-
ues learned by MAGNA have higher diversity, indicating the
ability to better pay attention to important nodes.

2 Multi-hop Attention Graph Neural
Network (MAGNA)

We first discuss the background and explain the novel multi-
hop attention diffusion module and the MAGNA architecture.

2.1 Preliminaries
Let G = (V, E) be a given graph, where V is the set of Nn
nodes, E ⊆ V×V is the set ofNe edges connectingM pairs of
nodes in V . Each node v ∈ V and each edge e ∈ E are asso-
ciated with their type mapping functions: φ : V → T and ψ :
E → R. Here T andR denote the sets of node types (labels)
and edge/relation types. Our framework supports learning on
heterogeneous graphs with multiple elements inR.

A general Graph Neural Network (GNN) approach learns
an embedding that maps nodes and/or edge types into a con-
tinuous vector space. Let X ∈ RNn×dn and R ∈ RNr×dr

be the node embedding and edge/relation type embedding,
where Nn = |V|, Nr = |R|, dn and dr represent the em-
bedding dimension of node and edge/relation types, each row
xi = X[i :] represents the embedding of node vi (1 ≤ i ≤
Nn), and rj = R[j :] represents the embedding of relation
rj (1 ≤ j ≤ Nr). MAGNA builds on GNNs, while bringing
together the benefits of Graph Attention and Diffusion tech-
niques.

2.2 Multi-hop Attention Diffusion
We first introduce attention diffusion to compute the multi-
hop attention directly, which operates on the MAGNA’s at-
tention scores at each layer. The input to the attention diffu-
sion operator is a set of triples (vi, rk, vj), where vi, vj are
nodes and rk is the edge type. MAGNA first computes the
attention scores on all edges. The attention diffusion module
then computes the attention values between pairs of nodes
that are not directly connected by an edge, based on the edge
attention scores, via a diffusion process. The attention dif-
fusion module can then be used as a component in MAGNA
architecture, which we will further elaborate in Section 2.3.
Edge Attention Computation At each layer l, a vector
message is computed for each triple (vi, rk, vj). To compute
the representation of vj at layer l+1, all messages from triples
incident to vj are aggregated into a single message, which is
then used to update vl+1

j .
In the first stage, the attention score s of an edge (vi, rk, vj)

is computed by the following:

s
(l)
i,k,j = δ(v(l)

a tanh(W
(l)
h h

(l)
i ‖W

(l)
t h

(l)
j ‖W

(l)
r rk)) (1)

where δ = LeakyReLU, W
(l)
h , W

(l)
t ∈ Rd(l)×d(l) , W

(l)
r ∈

Rd(l)×dr and v
(l)
a ∈ R1×3d(l) are the trainable weights shared

by l-th layer. h(l)
i ∈ Rd(l) represents the embedding of node

i at l-th layer, and h
(0)
i = xi. rk is the trainable relation

embedding of the k-th relation type rk (1 ≤ k ≤ Nr), and
a‖b denotes concatenation of embedding vectors a and b. For
graphs with no relation type, we treat as a degenerate categor-
ical distribution with 1 category1.

Applying Eq. 1 on each edge of the graph G, we obtain an
attention score matrix S(l):

S
(l)
i,j =

{
s
(l)
i,k,j , if (vi, rk, vj) appears in G
−∞, otherwise

(2)

1In this case, we can view that there is only one “pseudo” relation
type (category), i.e., Nr = 1
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Subsequently we obtain the attention matrix A(l) by perform-
ing row-wised softmax over the score matrix S(l): A(l) =

softmax(S(l)). A
(l)
ij denotes the attention value at layer l

when aggregating message from node j to node i.

Attention Diffusion for Multi-hop Neighbors In the sec-
ond stage, we further enable attention between nodes that are
not directly connected in the network. We achieve this via the
following attention diffusion procedure. The procedure com-
putes the attention scores of multi-hop neighbors via graph
diffusion based on the powers of the 1-hop attention matrix
A:

A =
∞∑
i=0

θiA
i where

∞∑
i=0

θi = 1 and θi > 0 (3)

where θi is the attention decay factor and θi > θi+1. The
powers of attention matrix, Ai, give us the number of rela-
tion paths from node h to node t of length up to i, increasing
the receptive field of the attention (Figure 1). Importantly,
the mechanism allows the attention between two nodes to not
only depend on their previous layer representations, but also
taking into account of the paths between the nodes, effec-
tively creating attention shortcuts between nodes that are not
directly connected (Figure 1). Attention through each path is
also weighted differently, depending on θ and the path length.

In our implementation we utilize the geometric distribution
θi = α(1− α)i, where α ∈ (0, 1]. The choice is based on the
inductive bias that nodes further away should be weighted
less in message aggregation, and nodes with different relation
path lengths to the target node are sequentially weighted in an
independent manner. In addition, notice that if we define θ0
= α ∈ (0, 1], A0 = I , then Eq. 3 gives the Personalized Page
Rank (PPR) procedure on the graph with the attention matrix
A and teleport probability α. Hence the diffused attention
weights, Aij , can be seen as the influence of node j to node
i. We further elaborate the significance of this observation in
Section 4.3.

We can also view Aij as the attention value of node j to
i since

∑Nn

j=1Aij = 1.2 We then define the graph attention
diffusion based feature aggregation as

AttDiff(G,H(l), Θ) = AH(l), (4)

where Θ is the set of parameters for computing attention.
Thanks to the diffusion process defined in Eq. 3, MAGNA
uses the same number of parameters as if we were only com-
puting attention between nodes connected via edges. This en-
sures runtime efficiency (refer to Appendix3 A for complexity
analysis) and model generalization.

Approximate Computation for Attention Diffusion For
large graphs computing the exact attention diffusion matrixA
using Eq. 3 may be prohibitively expensive, due to comput-
ing the powers of the attention matrix [Klicpera et al., 2019a].
To resolve this bottleneck, we proceed as follows: Let H(l)

be the input entity embedding of the l-th layer (H(0) = X)

2Obtained by the definitionA(l) = softmax(S(l)) and Eq. 3.
3Appendix can be found via https://arxiv.org/abs/2009.14332
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Figure 2: MAGNA Architecture. Each MAGNA block consists of
attention computation, attention diffusion, layer normalization, feed
forward layers, and 2 residual connections for each block. MAGNA
blocks can be stacked to constitute a deep model. As illustrated on
the right, context-dependent attention is achieved via the attention
diffusion process. Here vi, vj , vp, vq ∈ V are nodes in the graph.

and θi = α(1 − α)i. Since MAGNA only requires aggre-
gation via AH(l), we can approximate AH(l) by defining a
sequence Z(K) which converges to the true value of AH(l)

(Proposition 1) as K →∞:

Z(0) = H(l),Z(k+1) = (1− α)AZ(k) + αZ(0), (5)

where 0 ≤ k < K.
Proposition 1. limK→∞ Z(K) = AH(l)

In the Appendix we give the proof which relies on the ex-
pansion of Eq. 5.

Using the above approximation, the complexity of atten-
tion computation with diffusion is still O(|E|), with a con-
stant factor corresponding to the number of hops K. In
practice, we find that choosing the values of K such that
3 ≤ K ≤ 10 results in good model performance. Many
real-world graphs exhibit small-world property, in which case
even a smaller value ofK is sufficient. For graphs with larger
diameter, we choose larger K, and lower the value of α.

2.3 Multi-hop Attention based GNN Architecture
Figure 2 provides an architecture overview of the MAGNA
Block that can be stacked multiple times.
Multi-head Graph Attention Diffusion Layer Multi-head
attention [Vaswani et al., 2017; Veličković et al., 2018] is
used to allow the model to jointly attend to information from
different representation sub-spaces at different viewpoints. In
Eq. 6, the attention diffusion for each head i is computed
separately with Eq. 4, and aggregated:

Ĥ(l) = MultiHead(G, H̃(l)) =

(∥∥∥M
i=1

headi

)
Wo

headi = AttDiff(G, H̃(l), Θi), H̃
(l) = LN(H(l)),

(6)
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where ‖ denotes concatenation and Θi are the parameters in
Eq. 1 for the i-th head (1 ≤ i ≤M ), Wo represents a param-
eter matrix, and LN = LayerNorm. Since we calculate the
attention diffusion in a recursive way in Eq. 5, we add layer
normalization which helpful to stabilize the recurrent compu-
tation procedure [Ba et al., 2016].
Deep Aggregation Moreover our MAGNA block contains
a fully connected feed-forward sub-layer, which consists of
a two-layer feed-forward network. We also add the layer
normalization and residual connection in both sub-layers,
allowing for a more expressive aggregation step for each
block [Xiong et al., 2020]:

Ĥ(l+1) = Ĥ(l) +H(l)

H(l+1) = W
(l)
2 ReLU

(
W

(l)
1 LN(Ĥ(l+1))

)
+ Ĥ(l+1)

(7)

MAGNA generalizes GAT MAGNA extends GAT via
the diffusion process. The feature aggregation in GAT is
H(l+1) = σ(AH(l)W (l)), where σ represents the activa-
tion function. We can divide GAT layer into two components
as follows:

H(l+1) = σ︸︷︷︸
(2)

(AH(l)W (l)︸ ︷︷ ︸
(1)

). (8)

In component (1), MAGNA removes the restriction of attend-
ing to direct neighbors, without requiring additional parame-
ters as A is induced from A. For component (2) MAGNA
uses layer normalization and deep aggregation to achieve
higher expressive power compared to elu nonlinearity in GAT.

3 Analysis of Graph Attention Diffusion
In this section, we investigate the benefits of MAGNA
from the viewpoint of discrete signal processing on
graphs [Sandryhaila and Moura, 2013]. Our first result
demonstrates that MAGNA can better capture large-scale
structural information. Our second result explores the rela-
tion between MAGNA and Personalized PageRank (PPR).

3.1 Spectral Properties of Graph Attention
Diffusion

We view the attention matrix A of GAT, andA of MAGNA as
weighted adjacency matrices, and apply Graph Fourier trans-
form and spectral analysis (details in Appendix) to show the
effect of MAGNA as a graph low-pass filter, being able to
more effectively capture large-scale structure in graphs. By
Eq. 3, the sum of each row of either A or A is 1. Hence
the normalized graph Laplacians are L̂sym = I − A and
Lsym = I − A for A and A respectively. We can get the
following proposition:

Proposition 2. Let λ̂gi and λgi be the i-th eigeinvalues of
L̂sym and Lsym.

λ̂gi
λgi

=
1− α

1−(1−α)(1−λg
i )

λgi
=

1
α

1−α + λgi
. (9)

Refer to Appendix for the proof. We additionally have
λgi ∈ [0, 2] (proved by [Ng et al., 2002]). Eq. 9 shows that

when λgi is small such that α
1−α + λgi < 1, then λ̂gi > λgi ,

whereas for large λgi , λ̂gi < λgi . This relation indicates that the
use of A increases smaller eigenvalues and decreases larger
eigenvalues4. See Section 4.3 for its empirical evidence. The
low-pass effect increases with smaller α.

The eigenvalues of the low-frequency signals describe the
large-scale structure in the graph [Ng et al., 2002] and have
been shown to be crucial in graph tasks [Klicpera et al.,
2019b]. As λgi ∈ [0, 2] [Ng et al., 2002] and α

1−α > 0,
the reciprocal format in Eq. 9 will amplify the ratio of lower
eigenvalues to the sum of all eigenvalues. In contrast, high
eigenvalues corresponding to noise are suppressed.

3.2 Personalized PageRank Meets Graph
Attention Diffusion

We can also view the attention matrix A as a random walk
matrix on graph G since

∑Nn

j=1 Ai,j = 1 and Ai,j > 0. If we
perform Personalized PageRank (PPR) with parameter α ∈
(0, 1] on G with transition matrix A, the fully Personalized
PageRank [Lofgren, 2015] is defined as:

Appr = α(I − (1− α)A)−1 (10)

Using the power series expansion for the matrix inverse, we
obtain

Appr = α

∞∑
i=0

(1− α)iAi =

∞∑
i=0

α(1− α)iAi (11)

Comparing to the diffusion Equation 3 with θi = α(1−α)i,
we have the following proposition.

Proposition 3. Graph attention diffusion defines a personal-
ized page rank with parameter α ∈ (0, 1] on G with transition
matrix A, i.e., A = Appr.

The parameter α in MAGNA is equivalent to the teleport
probability of PPR. PPR provides a good relevance score be-
tween nodes in a weighted graph (the weights from the at-
tention matrix A). In summary, MAGNA places a PPR prior
over node pairwise attention scores: the diffused attention be-
tween node i and j depends on the attention scores on the
edges of all paths between i and j.

4 Experiments
We evaluate MAGNA on two classical tasks5: (1) on node
classification we achieve an average of 5.7% relative error
reduction; (2) on knowledge graph completion we achieve
7.1% relative improvement in the Hit@1 metric.6

4.1 Task 1: Node Classification
Datasets We employ four benchmark datasets for node
classification: (1) standard citation network benchmarks
Cora, Citeseer and Pubmed [Sen et al., 2008; Kipf and
Welling, 2016]; and (2) a benchmark dataset ogbn-arxiv on

4The eigenvalues of A and A correspond to the same eigenvec-
tors, as shown in Proposition 2 in Appendix.

5All datasets are public; code will be released after publication.
6Please see the definitions of these two tasks in Appendix.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3092



Models Cora Citeseer Pubmed
B

as
el

in
es

GCN [Kipf and Welling, 2016] 81.5 70.3 79.0
Cheby [Defferrard et al., 2016] 81.2 69.8 74.4
DualGCN [Zhuang and Ma, 2018] 83.5 72.6 80.0
JKNet [Xu et al., 2018]? 81.1 69.8 78.1
LGCN [Gao et al., 2018] 83.3 ± 0.5 73.0 ± 0.6 79.5 ± 0.2
Diff-GCN [Klicpera et al., 2019b] 83.6 ± 0.2 73.4 ± 0.3 79.6 ± 0.4
APPNP [Klicpera et al., 2019a] 84.3 ± 0.2 71.1 ± 0.4 79.7 ± 0.3
g-U-Nets [Gao and Ji, 2019] 84.4 ± 0.6 73.2 ± 0.5 79.6 ± 0.2
GAT [Veličković et al., 2018] 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

A
bl

. No LayerNorm 83.8 ± 0.6 71.1 ± 0.5 79.8 ± 0.2
No Diffusion 83.0 ± 0.4 71.6 ± 0.4 79.3 ± 0.3
No Feed-Forward� 84.9 ± 0.4 72.2 ± 0.3 80.9 ± 0.3
No (LayerNorm + Feed-Forward) 84.3 ± 0.6 72.6 ± 0.4 79.6 ± 0.4
MAGNA 85.4 ± 0.6 73.7 ± 0.5 81.4 ± 0.2

? : based on the implementation in https://github.com/DropEdge/DropEdge;
� : replace the feed forward layer with elu used in GAT.

Table 1: Node classification accuracy on Cora, Citeseer, Pubmed.
MAGNA achieves state-of-the-art.

170k nodes and 1.2m edges from the Open Graph Bench-
mark [Weihua Hu, 2020]. We follow the standard data splits
for all datasets. Further information about these datasets is
summarized in the Appendix.

Baselines We compare against a comprehensive suite of
state-of-the-art GNN methods including: GCNs [Kipf and
Welling, 2016], Chebyshev filter based GCNs [Defferrard et
al., 2016], DualGCN [Zhuang and Ma, 2018], JKNet [Xu
et al., 2018], LGCN [Gao et al., 2018], Diffusion-GCN
(Diff-GCN) [Klicpera et al., 2019b], APPNP [Klicpera et al.,
2019a], Graph U-Nets (g-U-Nets) [Gao and Ji, 2019], and
GAT [Veličković et al., 2018].

Experimental Setup For datasets Cora, Citeseer and
Pubmed, we use 6 MAGNA blocks with hidden dimension
512 and 8 attention heads. For the large-scale ogbn-arxiv
dataset, we use 2 MAGNA blocks with hidden dimension 128
and 8 attention heads. Refer to Appendix for detailed descrip-
tion of all hyper-parameters and evaluation settings.

Results MAGNA achieves the best on all datasets (Tables
1 and 2) 7, out-performing mutlihop baselines such as Dif-
fusion GCN, APPNP and JKNet. The baseline performance
and their embedding dimensions are from the previous pa-
pers. Appendix Table 6 further demonstrates that large 512
dimension embedding only benefits the expressive MAGNA,
whereas GAT and Diffusion GCN performance degrades.

Ablation study We report (Table 1) the model performance
after removing each component of MAGNA (layer normal-
ization, attention diffusion and feed forward layers) from ev-
ery MAGNA layer. Note that the model is equivalent to
GAT without these three components. We observe that diffu-
sion and layer normalization play a crucial role in improving
the node classification performance for all datasets. Since
MAGNA computes attention diffusion in a recursive man-
ner, layer normalization is crucial in ensuring training stabil-
ity [Ba et al., 2016]. Meanwhile, comparing to GAT (see the
next-to-last row of Table 1), attention diffusion allows multi-
hop attention in every layer to benefit node classification.

7We also compared to GAT and Diffusion-GCN (with Layer-
Norm and feed-forward Layer) over random splits in Appendix.

4.2 Task 2: Knowledge Graph Completion
Datasets We evaluate MAGNA on standard benchmark
knowledge graphs: WN18RR [Dettmers et al., 2018] and
FB15K-237 [Toutanova and Chen, 2015]. See the statistics
of these KGs in Appendix.

Baselines We compare MAGNA with state-of-the-art base-
lines, including (1) translational distance based models:
TransE [Bordes et al., 2013] and its latest extension Ro-
tatE [Sun et al., 2019], OTE [Tang et al., 2020] and
ROTH [Chami et al., 2020]; (2) semantic matching based
models: ComplEx [Trouillon et al., 2016], QuatE [Zhang et
al., 2019], CoKE [Wang et al., 2019b], ConvE [Dettmers et
al., 2018], DistMult [Yang et al., 2015], TuckER [Balazevic
et al., 2019] and AutoSF [Zhang et al., 2020]; (3) GNN-based
models: R-GCN [Schlichtkrull et al., 2018], SACN [Shang et
al., 2019] and A2N [Bansal et al., 2019].

Experimental Setup We use the multi-layer MAGNA as
encoder for both FB15k-237 and WN18RR. We randomly
initialize the entity embedding and relation embedding as the
input of the encoders, and set the dimensionality of the initial-
ized entity/relation vector as 100 used in DistMult [Yang et
al., 2015]. We select other MAGNA model hype-parameters,
including number of layers, hidden dimension, head num-
ber, top-k, learning rate, hop number, teleport probability α
and dropout ratios (see the settings of these parameter in Ap-
pendix), by a random search during the training.

Training procedure We use the standard training proce-
dure used in previous KG embedding models [Balazevic et
al., 2019; Dettmers et al., 2018] (Appendix for details). We
follow an encoder-decoder framework: The encoder applies
the proposed MAGNA model to compute the entity embed-
dings. The decoder makes link prediction given the embed-
dings. To show the power of MAGNA, we employ a simple
decoder DistMult [Yang et al., 2015].

Evaluation We use the standard split for the benchmarks,
and the standard testing procedure of predicting tail (head)
entity given the head (tail) entity and relation type. We
exactly follow the evaluation used by all previous works,
namely the Mean Reciprocal Rank (MRR), Mean Rank
(MR), and hit rate at K (H@K). See Appendix for a detailed
description of this standard setup.

Results MAGNA achieves new state-of-the-art in knowl-
edge graph completion on all four metrics (Table 3).
MAGNA compares favourably to both the most recent shal-
low embedding methods (QuatE), and deep embedding meth-
ods (SACN). Note that with the same decoder (DistMult),
MAGNA using its own embeddings achieves drastic improve-
ments over using the corresponding DistMult embeddings.

4.3 MAGNA Model Analysis
Here we present (1) spectral analysis results, (2) robustness to
hyper-parameter changes, and (3) attention distribution anal-
ysis to show the strengths of MAGNA.

Spectral Analysis: Why MAGNA works for node classifi-
cation? We compute the eigenvalues of the graph Laplacian
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Data
GCN

[Kipf and Welling, 2016]
GraphSAGE

[Hamilton et al., 2017]
JKNet

[Xu et al., 2018]
DAGNN

[Liu et al., 2020]
GaAN

[Zhang et al., 2018] MAGNA
ogbn-arxiv 71.74 ± 0.29 71.49 ± 0.27 72.19 ± 0.21 72.09 ± 0.25 71.97 ± 0.24 72.76 ± 0.14

Table 2: Node classification accuracy on the OGB Arxiv dataset.

Models WN18RR FB15k-237
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

TransE [Bordes et al., 2013] 3384 .226 - - .501 357 .294 - - .465
RotatE [Sun et al., 2019] 3340 .476 .428 .492 .571 177 .338 .241 .375 .533
OTE [Tang et al., 2020] - .491 .442 .511 .583 - .361 .267 .396 .550
ROTH [Chami et al., 2020] - .496 .449 .514 .586 - .344 .246 .380 .535
ComplEx [Trouillon et al., 2016] 5261 .44 .41 .46 .51 339 .247 .158 .275 .428
QuatE [Zhang et al., 2019] 2314 .488 .438 .508 .582 - .366 .271 .401 .556
CoKE [Wang et al., 2019b] - .475 .437 .490 .552 - .361 .269 .398 .547
ConvE [Dettmers et al., 2018] 4187 .43 .40 .44 .52 244 .325 .237 .356 .501
DistMult [Yang et al., 2015] 5110 .43 .39 .44 .49 254 .241 .155 .263 .419
TuckER [Balazevic et al., 2019] - .470 .443 .482 .526 - .358 .266 .392 .544
AutoSF [Zhang et al., 2020] - .490 .451 - .567 - .360 .267 - .552
R-GCN [Schlichtkrull et al., 2018] - - - - - - .249 .151 .264 .417
SACN [Shang et al., 2019] - .47 .43 .48 .54 - .35 .26 .39 .54
A2N [Bansal et al., 2019] - .45 .42 .46 .51 - .317 .232 .348 .486
MAGNA + DistMult 2545 .502 .459 .519 .589 138 .369 .275 .409 .563

Table 3: KG Completion on WN18RR and FB15k-237. MAGNA achieves state of the art.

Figure 3: Analysis of MAGNA on Cora. (a) Influence of MAGNA on Laplacian eigenvalues. (b) Effect of depth on performance. (c) Effect
of hop number K on performance. (d) Effect of teleport probability α.

of the attention matrix A, λ̂gi , and compare to that of the dif-
fused matrixA, λgi . Figure 3 (a) shows the ratio λ̂gi /λ

g
i on the

Cora dataset. Low eigenvalues corresponding to large-scale
structure in the graph are amplified (up to a factor of 8), while
high eigenvalues corresponding to eigenvectors with noisy in-
formation are suppressed [Klicpera et al., 2019b].

MAGNA Model Depth Here we conduct experiments by
varying the number of GCN, Diffusion-GCN (PPR based)
GAT and our MAGNA layers to be 3, 6, 12, 18 and 24 for
node classification on Cora. Results in Fig. 3 (b) show
that deep GCN, Diffusion-GCN and GAT (even with resid-
ual connection) suffer from degrading performance, due to
the over-smoothing problem [Li et al., 2018; Wang et al.,
2019a]. In contrast, the MAGNA model achieves consistent
best results even with 18 layers, making deep MAGNA model
robust and expressive. Notice that GAT with 18 layers cannot
out-perform MAGNA with 3 layers and K=6 hops, although
they have the same receptive field.

Effect of K and α Figs. 3 (c) and (d) report the effect of
hop number K and teleport probability α on model perfor-
mance. We observe significant increase in performance when

considering multi-hop neighbors information (K > 1). How-
ever, increasing the hop number K has a diminishing returns,
for K ≥ 6. Moreover, we find that the optimal K is cor-
related with the largest node average shortest path distance
(e.g., 5.27 for Cora). This provides a guideline for choosing
the best K.

We also observe that the accuracy drops significantly for
larger α > 0.25. This is because small α increases the low-
pass effect (Fig. 3 (a)). However, α being too small causes the
model to only focus on the most large-scale graph structure
and have lower performance.

Attention Distribution Last we also analyze the learned
attention scores of GAT and MAGNA. We first define a dis-
crepancy metric over the attention matrix A for node vi as
∆i =

‖A[i,:]−Ui‖
degree(vi)

[Shanthamallu et al., 2020], where Ui is
the uniform distribution score for the node vi. ∆i gives a
measure of how much the learnt attention deviates from an
uninformative uniform distribution. Large ∆i indicates more
meaningful attention scores. Fig. 4 shows the distribution of
the discrepancy metric of the attention matrix of the 1st head
w.r.t. the first layer of MAGNA and GAT. Observe that at-
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Figure 4: Attention weight distribution on Cora.

tention scores learned in MAGNA have much larger discrep-
ancy. This shows that MAGNA is more powerful than GAT
in distinguishing important nodes and assigns attention scores
accordingly.

5 Related Work
Our proposed MAGNA belongs to the family of Graph Neu-
ral Network (GNN) models [Battaglia et al., 2018; Wu et al.,
2020; Kipf and Welling, 2016; Hamilton et al., 2017], while
taking advantage of graph attention and diffusion techniques.
Graph Attention Neural Networks (GATs) generalize at-
tention operation to graph data. GATs allow for assign-
ing different importance to nodes of the same neighbor-
hood at the feature aggregation step [Veličković et al., 2018].
Based on such framework, different attention-based GNNs
have been proposed, including GaAN [Zhang et al., 2018],
AGNN [Thekumparampil et al., 2018], GeniePath [Liu et al.,
2019]. However, these models only consider direct neighbors
for each layer of feature aggregation, and suffer from over-
smoothing when they go deep [Wang et al., 2019a].
Diffusion based Graph Neural Network Recently Graph
Diffusion Convolution [Klicpera et al., 2019b; Klicpera et
al., 2019a] proposes to aggregate information from a larger
(multi-hop) neighborhood at each layer, by sparsifying a gen-
eralized form of graph diffusion. This idea was also explored
in [Liao et al., 2019; Luan et al., 2019; Xhonneux et al., 2020;
Klicpera et al., 2019a] for multi-scale Graph Convolutional
Networks. However, these methods do not incorporate at-
tention mechanism which is crucial to model performance,
and do not make use of edge embeddings (e.g., Knowledge
graph) [Klicpera et al., 2019b]. Our approach defines a novel
multi-hop context-dependent self-attention GNN which re-
solves the over-smoothing issue of GAT architectures [Wang
et al., 2019a]. [Isufi et al., 2020; Cucurull et al., 2018;
Feng et al., 2019] also extends attention mechanism for multi-
hop information aggregation, but they require different set of
parameters to compute the attention to neighbors of different
hops, making these approaches much more expensive com-
pared to MAGNA, and were not extended to the knowledge
graph settings.

6 Conclusion
We proposed Multi-hop Attention Graph Neural Network
(MAGNA), which brings together benefits of graph atten-

tion and diffusion techniques in a single layer through at-
tention diffusion, layer normalization and deep aggregation.
MAGNA enables context-dependent attention between any
pair of nodes in the graph in a single layer, enhances large-
scale structural information, and learns more informative at-
tention distribution. MAGNA improves over all state-of-the-
art methods on the standard tasks of node classification and
knowledge graph completion.
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